Vehicle exhaust emissions, particularly from diesel cars, are considered to be a significant problem for the environment and human health. Lean NOx Trap (LNT) or NOx Storage/Reduction (NSR) technology is one of the current techniques used in the abatement of NOx from lean exhausts. Researchers are constantly searching for new inexpensive catalysts with high efficiency at low temperatures and negligible fuel penalties, to meet the challenges of this field. This book will be the first to comprehensively present the current research on this important area. Covering the technology used, from its development in the early 1990s up to the current state-of-the-art technologies and new legislation. Beginning with the fundamental aspects of the process, the discussion will cover the real application standard through to the detailed modelling of full scale catalysts. Scientists, academic and industrial researchers, engineers working in the automotive sector and technicians working on emission control will find this book an invaluable resource.

NOx Related Chemistry is a volume of a series that presents timely and informative summaries of the current progress in a variety of subject areas within inorganic chemistry, ranging from bio-inorganic to solid state studies. This acclaimed serial features reviews written by experts in the field and serves as an indispensable reference to advanced researchers. Each volume contains an index, and each chapter is fully referenced. Best-qualified scientists write on their own recent results dealing with basic fundamentals of NO-chemistry, with an eye into biological and environmental issues Editors and authors are recognized scientists in the field Features comprehensive reviews on the latest developments An indispensable reference to advanced researchers

Presents a facsimilie of a book the author created after the death of her brother, and includes poetry, family photographs, letters, and sketches that deal with coming to terms with the loss.
Love has revived an ancient war. Jealousy has risen and torn lives apart. And one prophecy demands the ultimate sacrifice. What if rewriting your destiny means that you must sacrifice the one you love? Serena St. Michael has forsaken her future—for him. Tristan Gallagher has renounced the throne—for her. The Vergina Sun prophecy has been fulfilled, but at what cost? Their love has renewed an ancient war. With Serena gone, will Tristan save her in time? Or will the dark army of Diablo Fairies descend upon the Royal Protector Academy, destroying the London clan’s legacy and ending the existence of the gargoyle race forever?

Nox is the final novel in the Royal Protector Academy series. This dangerously exciting and darkly romantic conclusion will take your breath away. It can be read as a stand-alone trilogy or after the bestselling Revelation series. Intended for mature readers (18+) due to language, mild violence, and sexual situations. 2018 OUAB Nominee for Swoon-Worthy Romance 2018 UTOPiA Nominee for Best Supernatural Lead

The Royal Protector Academy novels are a serial trilogy meant to be read in order: Vernal (Book #1) Aequus (Book #2) Nox (Book #3) A King Rises Novella (Book #4)

A nude man invades Luca Suarez’s home and protects him from creatures who cannot exist. Creatures hunting him. The stranger can’t tell Luca why. He can’t even tell Luca his name. He remembers nothing until the moment he sees Luca. The only hint Luca has to the stranger’s identity is a tattoo on his wrist: Nox. Nox doesn’t know who he is, but he’s sure of three things, his memory loss is temporary, the monsters chasing Luca are called Anubis, and his Alpha, Koda, sent Nox to protect him. There’s just one problem Koda is Luca’s brother who was murdered five years ago. With each passing hour, Nox fills in the pieces painting an impossible truth. And with each passing hour, both men find themselves unexplainably attracted to each other. Something Luca is willing to embrace because he has nothing left to lose. And one Nox can’t let happen because it could get Luca killed. Nox is a HEA/HFN m/m paranormal, science-fiction romance. But be warned, these are NOT the shifters you are used to reading about.

NOx Emission Control Technologies in Stationary and Automotive Internal Combustion Engines: Approaches Toward NOx Free Automobiles presents the fundamental theory of emission formation, particularly the oxides of nitrogen (NOx) and its chemical reactions and control techniques. The book provides a simplified framework for technical literature on NOx reduction strategies in IC engines, highlighting thermodynamics, combustion science, automotive emissions and environmental pollution control. Sections cover the toxicity and roots of emissions for both SI and CI engines and the formation of various emissions such as CO, SO2, HC, NOx, soot, and PM from internal combustion engines, along with various methods of NOx formation. Topics cover the combustion process, engine design parameters, and the application of exhaust gas recirculation for NOx reduction, making this book ideal for researchers and students in automotive, mechanical, mechatronics and chemical engineering students working in the field of emission control techniques. Covers advanced and recent technologies and emerging new trends in NOx reduction for emission control. Highlights the effects of exhaust gas recirculation (EGR) on engine performance parameters. Discusses emission norms such as EURO VI and Bharat stage VI in reducing global air pollution due to engine emissions.

Available Information on control of NOx emissions from stationary combustion sources has been compiled to assist new source permitting activities by regulatory agencies. The sources covered are combustion turbines, Internal combustion engines, non-utility boilers and heaters, and waste Incinerators. The report discusses the background of NO, formation in the combustion process, major NO sources, and processes for NOx control. The current status of NO control technology is discussed and applications to meet permitting requirements is detailed. Permitted NOx emission levels are summarized by combustion source, fuel type and control technology. Documentation includes references and contacts for further Information.
This volume documents this unique family of cell surface proteins. Despite masquerading as intractable and difficult to clone and characterize, ENOX proteins have and continue to offer remarkable opportunities for research, commercial development and outside confirmation of therapeutic, diagnostic and new paradigms to help explain complex biological processes.

This book is a printed edition of the Special Issue "Selective Catalytic Reduction of NO" that was published in Catalysts

This book not only explores catalysis processes in redox reactions but also proposes a potential after-treatment strategy. Summarizing the authors' major works, it offers a guidebook for those working on environmental and industrial catalysis. It presents insights into reaction kinetics in a variety of materials and analyzes the external conditions influencing the reaction. As such it is of particular interest to engineers and scientists in the field of material chemistry, chemical engineering and automobile industry. With novel images and illustrations, it provides a new perspective for interpreting soot abatement material and understanding the reaction process and inspires scientists to design new catalysts with moderate redox capacity.

Copyright code: 7773e883f4bf85d29f4c7a0b2d97090